.=

/QWA“jijﬁ

P L]
)57 787
NASA Contractor Report 191545
Simulator for Heterogeneous Dataflow Architectures //

Mahyar R. Malekpour

Lockheed Engineering & Sciences Company

Hampton, Virginia

Contract NAS1-19000

September 1 T
ptember 1993 (NASA-CR-191545) SIMULATOR FOR

HETEROGENEOUS DATAFLOW

ARCHITECTURES Report, 1 Jun. 199} -
31 Aug. 1992 (lLockheed gEngineering

and Sciences Corp.) 56 p

NNASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

G3/33

N94-13797

unclas

0187789






Table of Contents

1. INIOAUCHON  coiceceerrveericnriscncssanssnersnsesseesssrassnnessssnsessssassrssssssnsassssnasnnenssssontsensssnse 1
2. Overview of ATAMM.....ccccovvmimervernineraniens eeresenessnersarssannressstsanssassesernresanesnaressane 2
2.1 Model COMPONENLS....cccovrirerrusrnsrsensrsenseanssnssannanss rereseneessressnresesaeesanesarasie 2
2.2 Performance Measures and Bounds......ccccovviisvnssrsisnmsrnsnissessssrenenneninninenen. 4
2.3 Control Eges...ccoeoviremricrcirnnnireenrsersarsasssesnrssnssnssssssnssosnsesssssasassssesases 7
3. Simulator Implementation Issues ................ reseeesesessnteassaresnreeessnrasensarssnnen S 8
3.1 Target Hardware Architecture................. FET—— resusesirsssereseensaseerarens 8
3.2 Implementing ATAMM......cccoiivimninmnnrsrennsnneencsssenssansnsesesanesmasessssasenes 10
3.3 Generic State Diagram of the AMOS ....ccorrirvivmmieretrcrencnerecenrcreeeee 12
3.4 EVENt-DIVEN ..cocvrrceerrceninsecsssanisniissanesssssssersssnssnssssssnnns eesnsnrressssararesins 14
3.5 Simulaton of Graphs with Variable Node Latencies .....cocceceeeiureueveninnnans 15
3.6 Simulaton of Graphs with Static Node to Processor Assignments............. 15
3.7 Simulation of Multiple Graphs.........cooeeivmreesmrreimrirrinnesccensescnernsnasssnces 16
3.8 Graph Entry, Simulator, Analysis, and AIE ToOOIS......cceeereercerercisnisncecsanens 16
4. Simulator Design and Development......cccvvvreirerrssnsnnsnnissnesstessnrsnssessessenessenssenss 18
4.1 Object-Oriented Programming......ccecsssrerereeesensssnesssnssarssnmsnssssarerscrsesscessses 18
4.2 Programming Environment and Language .......ccccecvveamserennnnscsssccsesssnsnnnnee 18
4.3 Objects and their Relationships.......coververeerieernrnrsinesnesisenecennnsnnensessses. 19
4.4 Simulator-Kemel......c..covvvvmevrninnieenirnecsniiennsensann cesessrssssessnsassssananes 19
4.5 Algorithm Graphs .....ccccovvivreirnireciririernrrsnrnnressssssnnssnsesescessenisesnesnnne 23
4.6  Processor-Group.....cceeemeieiiscnnsnnissssetresssnsessessnsons sessrresssserrnstssessnnranne 24
4.6.1 Graph-Manager.......ccccrvrmrrnivvnressranessniesssssiniessnessnnnnensesansosonsases 26
4.6.2 Functional Units .....ccceecerercersnmerierentenssisssnracessssnsnrssssssssrnsesasssnsas 27
4.6.3 Functional Unit State Diagram Description........ccvevueeeeecscaressennnnns 29.
4.6.4 FU LISIS cerctveurrurceeerecsssancserencssnessonssssesssneesssnsessnssanssssssnsssnsesansessns 31
4.6.5 LoCAl-NEIWOIKS .....cecerercreerrecsrnirrrssrssssnnncssassssnsssnsrsssnasessnassasassen 31
4.7  GlODbAl-NEtWOTKS ...ceecerererrircenrernesscnerenssssneissnessssnnrarsssnsssssnsesssssanssssessessas 32
4.8 TBO/TBIO and Ensemble TBO/TBIO ......ccccovmmrerrrsrunsrenrenneressrnessensscnenens 32
4.9 SYSIBIMI...ueirieeirerrerireceestiersnesasisissnssnnsesassssasrssnsesesnsssansssnasesosasssaesosansens 33
4.10 The Input and Output File FOrmats ...cocceecerverrimmenerererseneccnnenenscnanene 34
4.11 How to Use the SIMUIALOL.....ceeeicrerrcrreereerreesrersseensennsssssesssesssesssssssssssasasses 34
5. Case Studies and Experimental ReSULLS .......ccvvvarsirersnisnnsanessnssarsasiasesscrsrssnesaanses 36
5.1 Case Study L...ccoeeervrrerncenirrccerccsnucisenresseresssseosssssnanes reeesnemerertressssanrnansess 36
5.2 Case StudY 2..coeeerecirecnrrnscreniaisacnnssanessessssnnssnstssnnasassnsssnesssansenssnneasane 37
6. SUMMARY cooeercerirenecrrccnissnssanssanissosessssnsssssnessssnsessssnnasasssassssansassssssnassssnasesss 41
REFEIEMCES ceevcerrirrcreresccsscrersssrosssnsissssnsesssassessneneressssssressssssonsnasensannnnnsrsssansssssns 42
APPENAIX A et es e seassse st s st s st s R s s e 44
ApPPENdiX B e et sa st s e 47
APPENAIX C i s neas et a e e e e 48
APPENAIX D s s s e s s s a s e s 49
APPENAIX E e s ses et tsansne s e e nes 50
APPENdIX F et ses st esne e ns s snsanesnssse s sas e e sanasaes 51



AMG
AMOS
ATAMM
CMG
ENS

GRF
GVSC
NMG

PI-Bus
SGP

TBIO
TBO
TCE
TGP
VHSIC

Acronyms

Advanced Development Model

ATAMM Integrated Environment
Algorithm Marked Graph

ATAMM Multicomputer Operating System
Algorithm To Architecture Mapping Model
Computational Marked Graph

Ensemble

Fire/Data/Time

Functional Units

Graph

Generic VHSIC Spaceborne Computer
Node Marked Graph

Object-Oriented Programs

Parallel Interprocessor Bus

Single Graph Play

Time Between successive Inputs

Time Between Input and Vcorresp'onding Output

Time Between Outputs

Total Computing Effort

Total Graph Play
Very High Speed Integrated Circuit



" 1. Introduction

The Algonthm To Architecture Mappmg Model (ATAMM) is a Petrl net based model
capable of describing the perxodrc execution of large -grained, data-mdependent algorithm graphs
on multiprocessor architectures. ATAMM prov1des a description of the data flow and control
flow necessary to provide for the predictable execution of an algorithm in real-time.

 The ObJCCU;c of this research i is to develop a software simulator capable of srmulatmg the
e)-(ecution ofa graph ona given system under the ATAMM rules. The purpose of the simulator is
to enable a study of the behavior and performance of both heterogeneous and homogeneous
multicomputer dataflow systems prior to the availability of hardware prototypes. This simulator
is able to assist with the development of ATAMM-based architectures and the investigation of
theories concerning the ATAMM rnodel.r Thls slmulator is user-friendly and ﬂexible to permit
examining different attributes of a generic system. The simulator also provides the means to
identify an architecture by specifying different parameters of the system in order to evaluate the
periodic execution of an algorithm on a given hardware system. Evaluation of the simulator is
conducted through several case studies.

Section 2 of this report is an overview of ATAMM. Performance measures are also
defined in Section 2. The implementation issues of this new simulator, which will hereafter ber 7
referred to as the Heterogeneous ATAMM Simulator or simply as the Simulator, are discussed in
Sectlon 3. The design and development of the Slmulator are presented in Sectron 4 Case studies
and srmulatlon results of example algorrthm‘ graphs are presented in Section 5. This report;
concludes Section 6, with a drscussron of ongomg and future research to expand the model to a

broader class of multiprocessor archrtectures

The use of brand names is for completeness and does not imply NASA endorsement.



2. Overview of ATAMM

2.1 Model Components

ATAMM is designed to model the control scheduhng, and communication issues for

computauonal algonthms acccptmg periodic mput data and generanng penodrc output data [1]

ATAMM models ‘data-driven real-ime aléomhms whxch may be represented by data-mdependent
dxrected graphs The nodes of the graphrare assumed to berof sufﬁcrent computatxonal complex1ty

to warrant parallel execution. The target hardware system has prevxously consrsted of a set of

homogeneous processors Thxs Slmulator however is mtended to support the extension of
ATAMM to heterogeneous processors '

7 The model consists of a set of Pem net ma.rked graphs [2 3 4] whrch combme the
funcnons of an algonr.hm with the necessary compunng activities. Thc Algonthm Marked Graph
(AMG) the Node Marked Graph (NMG) and the Computanonal Marked Graph (CMG)
constitute the three components of the ATAMM. The Algorithm Marked Graph (AMG)
rcpresents a specific decomposition of the functional computa’tion'require'ments. The AMG, as
illustrated by the example in Figure 1, uses nodes (circles) to represent hlocks of code or
processes which are to be executed and edges (directed line segments) to represent data
dependencies between the nodes. Each AMG node is executed to completion before another
node may be scheduled on the same processor. A token (solid dot) on an edge represents the
presence of a single data packet. All edges may have a pool of buffers and can accommodate
more than one token at a time. A node Ecqnsumes one token from each of its input edges when it
fires (begins execution) and deposits one token on each of its output edges when it completes
execution. Source and sink transmonsfor mput and outpur signals are n:presented as rectangles.

"~ The Node Marked Graph (NMG), illustrated in Figure 2, is a representation of the
execution of an AMG node by a processor. Three primary activities associated with execution of

an AMG node, reading of input data (R), processing of input data to generate output data (P),
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Figure 1. An example Algorithm Marked Graph.
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Input Output
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Process Ready
Figure 2. An example Node Marked Graph.

and writing of output data (W), are incorporated in the NMG. A recent enhancement of the
model (4, 5] allows m tokens on the Process Reqa‘y edge, which permits m simultaneous
instantiations of the node to be executed in parallel on different processors with different data
packets. The n tokens on the Output Empty edge indicate that the predecessor AMG node can be
instantiated up to n times before an output is consumed by the successor node. The value of n is

always greater than or equal to m. The values of n and m are determined by a graph analysis



procedure and are typically different for each AMGﬁnode. Tokens on the Outpur Available edge
indicate the presence of data on the edge.

The Computational Marked Graph (CMG), illustrated in Figure 3 (for the AMG of Figure
1 and for the simple case of m = 1 for all nodes) is constructed by replacing each AMG node with
its NMG and replacing each AMG edge with an edge pair, consisting of a forward directed edge
representing dataflow and a backward d1rected edge representmg control flow. As both a
graphical and mathematical model the CMG is useful for determining the performance bounds as
well as the data and control flow required for a hardware implementation.

Two types of concurrency are possible when executing an algorithm decomposition as
specified by the CMG. First, several nodes of the dataflow graph without data interdependency
may be simultaneously performed on the same data packet. This is referred to as parallel
concurrency because it is the result of inherent parallelism in t}te ‘graph [6]. The amount of
parallel concurrency depends on the number uf pzirallel paths in theré.lgon'thm decomposition as
well as the number of available resources. Secund, uevem! uqdes uf the dataflow graph may be
simultaneously performed on different data packets. This happens rwhen new data packets are
accepted for execution before the completion of computation of previous data packets. This
simultaneous processing of different data packets is referred to as pipeline concurrency [6]. This
type of concurrency has a direct effect on throughput The amount of pipeline concurrency

depends on the number of available resources as well as the structure of the AMG.

2.2 Performance Measures and ébunds '

The two primary performance measures s for a graph are the steaETy-state T'une Between

Outputs (TBO) and the Time Between Input and correspondmg Output (TPIO) ’TBO is the
elapsed computing time between successwe aIgonthm outputs. Therefore, the inverse of tﬁe

steady-state value of TBO is a measure of throughput in data packets pcr unit iime. The TBO

lower bound, TBOp, and hence the upper bound on throughput, is determined by the algorithm
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graph and the number of available resources. The algorithm imposed TBOyy, is determined by the
largest time per token of all directed circuits in the CMG [6]. In graphs with recurrent circuits,
TBOyp, is determined by the time per token of the largest recurrent circuit in the CMG. The
second bound on TBO is imposed by the availability of resources [6] and is given by the ratio of
TCE over R where TCE (Total Computing Effort) is the summation of all the node latencies of a
CMG and is the time required for all graph nodes to execute a single data packet. R is the
number of resources. For instance, the TBO of the AMG of Figurerl, which has no recurrent
circuit, is limited only by the number of available resou:rcesi.' TBIO is defined as graph latency,
which is the time for a single data packet to progress from source to sink. The algorithm-imposed
lower bound, TBIOy,, is determined by the critical path from source to sink. However, the TBIO
is a function of TBO and is determined by analyzing the algorithm graph and considering the
number of resources.

To achieve a desired TBO for a given algorithm graph, ATAMM requires that the input
data to the algorithm graph be supplied at the stcady-§tatc TBO rate. Therefore, the injection
rate, defined as the Time Between successive Inputs (TBI) and TBO are synonymous at the
steady-state and are used intcrcfxan geably.

Other performance measures are speedup and resource utilization. Speedup for a
homogeneous processor system is defined as the ratio of TCE over TBO. Resource utilization for

a homogeneous processor system [6], U, is defined by

U = TCE ’
TBO * R

where R is the number of available resources, and

TBO >TCE/R, for0<Ucx<l.




The speedup and resource utilization may similarly be defined for the heterogeneous processor
configurations.

2. 3 Control Edges
7 A control cdgc is an AMG cdgc which i nnposcs an amﬁcxal data dcpcndcncy betwcen two
AMG nodes [6]. The control edges are used to either alter node schedules to eliminate needless

concurrency or to improve resource utilization.



3. Simulator Implementation Issues

3.1 Target Hardware Architecture

The generic heterogeneous architecture considered is displayed in Figure 4. This generic
heterogeneous architecture consists of a number of processor groups that in turn are composed of
a number of resources or functional units (FU), which are the actual processing units, and a
number of local networks. Although the functional units and the local networks within each
processor group are assumed to be homogeneous, the different processor groups are not required
to have similar characteristics. In other words, a heterogeneous system is realized by groups of
processors with different characteristics that communicate with each other over the global
network.

The Advanced Development Model (ADM) [7, 8] and the Generic VHSIC Spacebome
Computer (GVSC) [8] are typical architectures which have been the primary targets of ATAMM
implementations. These systems consist of four identical MIL-STD-1750A functional units that
communicate over a Parallel Interprocessor bus (PI-bus) , as shown in Figure 5, and a MIL-STD-
1553B communication module that is also connected to the PI-bus and serves as the front-end of
the system. The 1553B is essentially a 1750A with less memory and the 1553B interface. These
are examples of heterogeneous systems with two groups of processors where one group has four
resources (four 1750As) while the other has only one resource (one 1553B) and they
communicate over a global network, the PI-bus. However, previous ATAMM implementations
on these hardware systems modeled only the behavior of the homogeneous set [9] of 1750A
processors. The new simulator described herein could support the modeling of the more general

heterogeneous architecture.
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Figure 4. Architecture modeled by the Heterogeneous Simulator.
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Figure 5. Layout of the ADM and GVSC systems.

3.2 Implementing ATAMM
Systems implementing the ATAMM consist of four logical components: the graph

manager the global memory, a set of funcnonal uruts and the commumcauon bus [9] The graph

manager is rcsponsxble for ensuring that the ovcrall system operates according to thc ATAMM
rules. The functional unit is the logical component that executes all three node marked graph
(NMG) transitions of each algorithm operation. When a read transition of the CMG graph is

enabled, the graph manager assigns a functional unit from the list of available functional units to
execute the corresponding algorithm node. If there are additional enabled nodes, the graph

manager assigns them, according to priority, to the subsequent resources in the available list. The
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graph manager updates the marking of the CMG using status information reported by the
functional units. The input and output data corresponding to each AMG node are stored in the
global memory. In the context of ATAMM, the memory is considered to be logically global to all
fugctigna,l units. However, in a real system, the global memory may be either centralized or
distributed. The functional unit communicates with the graph manager to update the status of the
CMG, and with the global memory to read and write data. The communications between the
graph manager, the global memory, and functional units are asynchronous and are carried out by
means of a communication bus. To synchronize movement of tokens in the CMG and to arbitrate
among different functional units, it is assumed that only one functional unit communicates with
the graph manager at any one time. This is accomplished by the means of a semaphore.
Therefore, the functional unit that possesses the semaphore has control of the communication bus
and can communicate with the graph manager and update the status of the CMG. In this regard,
the communication bus and semaphore are often used interchangeably.

Thus far, ATAMM implementations have only considered systems with a single
semaphore and a single communication bus. One of the purposes of this Simulator is to explore
systems with multiple semaphores. In order to ensure that all functional units have an identical
copy of the graph data structure, a functional unit grabs the semaphore before changing the graph
data structure. In a distributed system, the updated graph data structure is transmitted to all
functional units by a broadcast, and only then does the functional unit release the semaphore for
other communications.

The graph manager and global memory may be distributed among all the functional units.
This distribution of activities has the advantage of increasing the number of functional units in the
system and at the same time improving the potential for achieving a higher degree of fault
tolerance to processor failure. Also, a distributed global memory eliminates the need for shared
memory among functional units.

The integration of the graph manager with the operating system constitutes the ATAMM
Multicomputer Operating System (AMOS). The resource list, global memory, and the algorithm

11



marked graph provide the necessary support to AMOS. An AMOS controlled architecture

consisting of personal computers has been developed aﬂdmswé?ovaﬁdatc the ATAMM rules

Other testbeds with increased functionality, the ADM and the GVSC, utilize a distributed graph

manager and distributed global memory.

3.3 Generic State Diagram of the AMOS e e -

The generic state diagram of the AMOS is shown in Figure 6. The AMOS is composed of
six states: Idle, Reading, Processing, Writing, Grab-Semaphore, and Graph-Manager. Other
implementations of ATAMM have included other states such as Testing [7, 8]. Inidally, all
functional units start in the Idle State. A functional unit remains in this state until either its
identiﬁcation number (ID) appears at the top of the resource list, which is a First-In-First-Out list
of available functional units, or it receives a message indicating that a node has been assigned to it
by another functional unit acting as graph manager. When idle with its ID at the top of the
resource list, the functional unit monitors the status of the CMG untl a read transiton of an
algorithm node becomes enabled. Once an enabled read node is identified, the functional unit
attempts to acquire the semaphore which makes it the active graph manager of the system. It then
assigns a node to itself, consumes one token from each input edge of the algorithm node, updates
the CMG marking, and removes itself from the available list. -

Before progressing to the next state, Reading, the functional unit examines the algorithm
graph and assigns other enabled nodes to the subsequent functional units in the available list. It
notifies other functional units via fire-messages, updates the CMG accordingly, broadcasts the
updated graph data structure, and then releases the semaphore. This broadcast is termed a "Fire"
broadcast. Assigning other enabled nodes to idle functional units while holding the semaphore, is

an enhancement to the GVSC AMOS that reduces the communication overhead.

12
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Figure 6. AMOS state diagram.

The "Fire" broadcast contains the updated version of the CMG, the updated resource list,
and the ID of the functional units proceésiné the AMG nodes. This broadcast, as well as the other

broadcastdxscussed next,provxdcthestntusmfogmatlog ) pgécgéary for the graph manager to
mamtamthe status of mé'CME.L%cnm; graph managerlsdxstnbutcd, this communication is
espccxally unportant tocnsumth;t;.ll md1;1dual graphrnénagcrs contam the same CMG marking.

~ Upon dctectirnfg aﬂre mcs;agcm the Idle state, the functional unit transits to the Reading
State where it reads the input datampreparauon for node execution. The functional unit then

migranc$ to the Progcssing State where it performs the task represented by the algorithm node.

The ﬁxnctional unit remains in the Proccssing State until the node operation is complete. Then,

13



the functional unit attempts to undergo another state transition to the Writing State by grabbing
the semaphore. In the Writing State it updates the CMG, writes the output data, and broadcasts
the updated information to other functional units. This broadcast, termed a "Data” broadcast,
provides the updated CMG and the output data of the node to the other functional units. The
functional unit then goes to the Graph-Manager State. Now that the functional unit holds the
semaphore and is the active graph manager, it attempts to fire as many nodes as possible prior to
releasing the semaphore. Since the operation of the system is asynchronous, the graph manager
must generally be interrupt driven.

The CMG and resource list in the global memory of a functional unit can be updated while

in any state by "Fire" or "Data” broadcasts from other functional umts The "Fire" and "Data”
broadcasts not only provide the communication necessary for the integrity of overall system
operation, but also the means to analyze the system performance. By labeling, time tagging, and
storing information about each broadcast, such as the event (Fire and Data), the node number,
and functional unit ID, the token movement within the CMG, as well as functional unit activity
can be reconstructed. Other measurements such as TBIO, TBO, and functional unit utilization and

concurrency may also be extracted.

3.4 Event-Driven

The prevxous ATAMM sunulator [9] was clock-dnven in the sense that the system-clock

of the simulator was mcremented by one uck at a time. Sxmulanon of algomhm graphs proved to

be slow and time consummg Tc speed up the sunulauon process the system-clock of Lhe

the system. Since the Slmulator has the full knowledge of the overall system, 1t can determme the

exact time of occurrence of the next event and thus increment the system-clock accordmgly In

this regard, the SlmuIator deﬁned “herein is event-dnven Smce, in general the next event wiIl,

take pIace in the time mterval of greater than or equal to one system-clock txck the event-dnven

Simulator is expected to be consrderably faster
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3.5 Simulation of Graphs with Variable Node Latencies

The previous ATAMM simulator [9] simulated graphs with fixed node latencies. Since
algorithm graphs representing real applications may not have fixed latenbies, it is desirable to be
able to simulate graphs with variable node latencies. This is accomplished by ;epmsendng the
timing latency of AMG nodes by statistical functions. The Simulator then determines the actual
latency of an AMG node during the simulation process, for every input data packet, by executing
the appropriate statistical function representing the AMG node. When the AMG nodes have
variable latencies and upon multiple instantiations of nodes, it is possible that the data packets
produced by the nodes may arrive out of order. To enforce firing of AMG nodes at the proper
time with the appropriate data packet, the data packets are tagged to guarantee correctness of the
CMG marking.

Specific statistical functions are included in the Simulator and additional functions may be
inserted. The Delta function represents the fixed node latency and is usﬁned to be a posiﬁve
value. Using the Delta function, the Simulator defaults to the fixed node latency case. The
Uniform Distribution function requires a lower bound and an upper bound. The Gaussian
function requires a mean and a standard deviation. The Discrete function requires an input file
where the discrete values for each input data packet are stored. The Exponential function

requires a mean value.

3.6 Simulation of Graphs with Static Node to Processor Assignments

The previous implementations of the ATAMM targeted homogeneous architectures [3, 7,
8] where all nodes of the algorithm graphs are mapped to and executed on all identical functional
units of a system. However, it may not be practical or necessary to always have a fully redundant
system. In some real systems, memory constraint is 2 hmitmg factor. In othér:systet;rﬁ, functional
units may have different characteristics from one processor group to another. By partitioning the

algorithm graph into groups of nodes and assigning each group to a different processor group, the
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same performance as the fully redundant system (a single processor group) may be achieved. A
proper partitioning of the graph can minimize interprocessor communication overhead and
increase throughput.

Analysis of the AMG reveals that it is often possible to group some of the nodes into
separate sets and statically preassign each set to different processor groups to get equivalent
performance. In the static assignment of nodes to processor groups, execution of the sets are
assumed to be confined to the functional units to which they are assigned. However, in a fully
redundant system where all nodes are assigned to all functional units of a single processor group,
these sets may appear as patterns that migrate from processor to processor.

T;) accommodate for the static assignment of nodes to processor groups, this Simulator is
désigned so that each processor gféup is independent of otixef gx:orups. The assigned nodes are

encapsulated within each processor group and are internally managed by the group.

3.7 Simulation of Multiple Graphs

VWhiIc simulating multiple independent graphs, it is often necessary to phase the graphs
with respect to one another and to simulate them in a predefined sequence. The phasing and
sequencing of algorithni graphs requires certain dependencies among them. These dependencies
are imposed by the introduction of control edges that connect the sources of different graphs
together. However, due to the nature of the phasing and sequencing problems, these control
edges must be dealt with separately in the Simulator. To handle these control edges, the
Simulator starts the phasing process Qf a source as soon as an input control edge becomes active.
This corresponds to performing an OR operation on the control edges. The Simulator then fires

the source after the specified delay interval.

3. 8 Graph Entry, Slmulator Analysis, and AIE Tools

The relanonslup of the Slmulator wuh the other ATAMM tools is shown in Figure 7. As

shown in the figure, the input to the Simulator is a graph (GRF) file; graph files have ".gf"

16




extensions. The Simulator output is a Fire/Data/Time (FDT) file; FDT files have ".fdt"
extensions. The GRF file contains the algorithm marked graph and the setup information about
the Simulator, e.g., the number of groups of processors and number of functional units in each
group type. The FDT file is a collection of time-tagged events which provide a means of
evaluating the results of algorithm graph execution. Basic information in the FDT file include the
time of occurrence of each event, name of the event, node identifier, node color, and functional
unit identifier. The format of the GRF and FDT files are discussed in Section 4.10. The GRF file
is the output of the Graph Entry software tool developed to draw a graph and define attributes of
the nodes and the edges. The FDT file serves as the input to the Analysis Tool [12] which
graphically displays algorithm and resource activities and provides automatic and user-interactive
performance assessment. To smooth out the transition of the Gréph Entry output into the
Simulator and the Simulator oufpdt inztorith; Analysis Tool, an ATAMM Integrated Environment

(AIE) was proposed to integrate these ATAMM tools.

Graph Entry—g——b Simulator _Fllll" Analysis

Figure 7. Flow of information among the ATAMM tools.
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4. Simulator Design and Development

The development of the Simulator is presented in this section. This Simulator allows the
study of the behavior of algorithms in heterogeneous dataflow architectures operating in real-time
based on ATAMM. The Simulator permits an architecture-independent study of behavior and

performance of a system prior to the availability of a hardware prototype.

4. 1 Ob]ect-Orlented Programming

Ob)ect onented programmmg lends itself to modelmg different parts of a complcx entity

and thc relatlonshlp among 1ts parts Thc Ob_]CCtS can be defined and devcloped separately to

ensure prlvacy of data reusabllxty, and readablhty Thls also makes mamtenancc and debuggmg

more manageablc and systemanc. Further discussions of OOP are provided in Appendix F and in

Reference [9].

4.2 Programming Environment and Language

The implementation of the Simulator requires a powerful programming language and
software environment. The Simulator is written in the C++ programming language. The main
reasons are: 1) it is an object-oriented language with multiple inheritance and thus is a good
system programmmg languagc 2) 1t provxdes good data structures control flow primitives, and a
rich set of operators; and-‘é; it is compatlble w1th Mlcrosoft Wmdot;vs1 The Simulator is
developed in the Microsoft Windows environment because of its object-oriented programming
capabilities including message passing and a vast library of graphics routines, especially the
windowing capabﬂities. Other Microsoft Windows environment features include the capability to

run more than one application in parallel, permitting the user to run more than one instance of the

Simulator at the same time. This provides a means to simulate and compare two or more

1 Microsoft Windows is a trade mark of Microsoft Corporation.
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simulations simultancously. As another example, the Simulator, the Graph Enuy, and the
Analysis tools can be running concurrently allowing an easier transition between them.

The obje'cts"é.re deﬁnea and developé&"’séparately to ensure privacy of data, reusability,
and readability. This makes maintenance and debugging more manageable and systematic [9].
Every object that directly interacts with the user has its own independent window which allows

the display of different windows to be viewed at the same time.

4.3 Objects and their Relationships

The main logical components or objectsr of the Simulator are, in part, a result of the
ATAMM. Since the ATAMM is a set of rules by which an algorithm graph can be mapped to an
architecture, the three main cIassgs of objpcts are Graph-Manager, Graph, and Processor-Group.
The Processor-Group object consists of a set of functional units and, hence, the FU-List object
and the Functional Unit objcct (within the FU-List object) are introduced. Any system has some
means of communica_tion among its components; thus the Network object evolved. A
management mechanism for arbitration amorig these objects is provided by the Simulator-Kernel

object [9]. Interconnection among these and other entities is portrayed in Figufe 8.

4.4 Simulator-Kernel

The Simulator-Kemnel provides, manages, and simulates the multitasking environment
where the functional units can operate without conflict. This object is the operating system for
the Simulator and the heart of this software. The arbimu'on among different objects is enforced
in a non-preemptive manner, where every object is given enough time to accomplish its task. This

is easily realized by employing object-oriented programming methodology [9].
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.mel object has a number of child objects including ProcéssoriGrOUP,

Nétwork, Algorithm Graph, and a System-Clock object. The Simulator-Kemel passes full control
so; rsxﬁxsp'cnds itself.w Upon completion of its task, the target object returns control back to the
Simulator-Kemel along with the anticipated time of the next event in that object. Transfer of
control is accomplished through the message passing capability of object-oriented programming.
Upon execution of all objects, the Simulator-Kemel updates the System-Clock appropriately to
indicate the time of occurrence of the next cy;pt:in the fntirg system. Since the Simulator has the
full knowledge of the sﬁster’ﬂ, it is aware of the timing and nature of the next event. If, however,
the time of occurrence of the next event is beyond the upper bound of all events, the Simulator
stops the simulation process and provides an‘error message with indications of the probable
causes. This process continues for all objects, in an orderly fashion, until simulation of the graph
is complete.

~ The order in which the objects are invpked is as follows. First, the Processor-Group
object, described in the following sectrion,ris invoked. It then passes control to the Graph
Manager arid? sﬁbsequendy, to the Funétional Units viar the FU-Lists object. Second, the
Network object is invoked to carry out its éommunication task. The Network object, described in
Section 4.7, in turn, passes control to its child objects. The Processor-Group and the Network
ol;jgc;s have the; same bchavior as }thci Simglatpr-l{emel toward their constituents. Finally, the
System-Clock is appropriately updated. The hierarchy of passing control to the lowest level
ijcct#, child objects, is also poftrayeé in Figur;: 8.

Thus far, the functionality of the Simulator-Kernel from an internal information viewpoint
wasrdcscribcd, Another functional aspect of this object is its central role with respect to user
interactions. The Simulator-Kemel object and all other objects that require user interactions have
thclr own indcpehdentr;avindon through Which information may be passed and displayed. For

these objects, the terms object and window are used interchangeably.
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Figure 9. Simulator-Kemel.

For Vu:sétr interactions, the Slmulator-Kemclprowdesaset of push buttons mxts window,
Fxgure 9. Some of these push ‘buttons contain a sublayer of selccuons “The top lcvel sclcicinoirrts'
are for informative purposes while the sublayer selections perform an operanon For example, the
second layer of the "Processors” and "Networks" push buttons are the "+" and "-" push buttons
that allow the user to increase and decrease the number of these objects, respectively. The speed
of the simulation can bciédjﬁsrt’éd;dlrough the ""Spéea; ‘button to tu:bo,fast,mé&um or slow.
The "Open..." button allows the user to open a GREF file and to load the algorithm marked graphs
for simulation. The "Discard...” button lets the user specify the number of initial data packets that
are to be discarded. The number of discarded data ﬁéckéts corresponds to the data packets prior
to reaching the steady state. This number is important in calculating the TBO, TBIO, ensemble
TBO, and ensemble TBIO points where the ensemble values are defined as the average values.
The duration of the simulation process, the "Duration..." button, can be defined by specxfymg the
number of data packets. The "TBO/TBIO" and "Enscmble" toggle key let the user set upfthe g
Simulator for calculating the TBO and TBIO points or the ensemble TBO and ensemble TBIO
points. The "Run" and "Stop" toggle buttons allow the user to initiate and terminate the
sixhuliﬁbﬁ'pfbéess; When czifdﬁldﬁng “TBO/TBIO" points, the Simulator prompts for an output
FDT file name. When calculating "Ensemble” TBO and TBIO points, the Simulator prompts for
the number of ensemble points ‘desired. The "Pause” and ' Rcsumc togglc buttons pause and
resume the simulation process, respectively. All wmdows have a help opuon wherc the "Help” -

buttons invoke the appropriate help files for specific guidance concemning window functions. The




"About" button invokes the signature and displays the general information about the Simulator.
This Simulator only operates in the simplex mode.

The Simulator keeps track of clock ticks, number of events, and number of data packets
into and out of the graph. It also reports the current status of these activities for user's
information upon receiving control of the system via the "System" window. The speed of
simulaton may be adjusted to turbo, fast, medium, or slow at any time. This provision is
provided for animation purposes where the simulation of the graph is carried out at the desired
pace. Since this window is the heart of this software, existence of other windows depend on its

existence, i.e., closing this window results in termination of the Simulator.

4.5 Algorithm Graphs

The Algorithm Graph object of the Simulator is a set of objects that are connected
together by a set of linked lists. The objects that constitute the Algorithm Graph objects are the
nodes and the edges. The node object has three variations and represent the nodes, the sources,
or the sinks of the algorithm graphs. The edge object has two variations and represent the data or
the control edges of the algorithm graphs. These objects and their interrelations represent the
algorithm marked graphs. The input algorithm marked graph files provided by the Graph Entry
tool, discussed in Section 4.10, conveys the necessary information about these objects.

When loading an input file, the Algorithm Graph object scans the input file and upon
detecting a node or an edge, creates a new instance of the appropriate object and sends a message
to the object to read its own data and initialize itself. The Algorithm Graph object then inserts the
object into the proper linked lists. The linked lists that represent the algorithm graph are a linked
list of node and a linked list of edge objects. Each node object has, in turn, two linked lists of
edge objects, one for the input edges and the other for the output edges. Each edge object has
two linked lists of edge objects, one for the output edges of its initial node and the other for the
input edges of its terminal node. The source object has two additional linked lists of edges, one

for the input control edges and the other for the output control edges of the source. These
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control edges that connect the sources of the algorithm graphs together are for phasing and

sequencing purposes and require special treatment by the Simulator. The data structure of the

algorithm graphs, as portrayed by the Algorithm Graph object, is depicted in Figure 10.

4.6 Processor-Group

To model and simulate a heterogeneous architecture, the Processor-Group object is
designed to represent a generic system where different attributes of the system can be tailored to
match a particular architecture. Since every Processor-Group object represents a homogeneous
system, two or more of these objects characterize a heterogeneous system. In a heterogeneous
system, different Processor-Groups may have different characteristics, e.g., number of functional
units, test time, and speeds; but all functional units within a Processor-Group object share similar
characteristics. The Functional Unit object is designed so that it can undertake any or all tasks
represented by the input AMG. In this regard, the sources, the sinks, and the nodes of the AMG
are treated equally. In this Simulator, the number of Processor-Groups, Functional Units, and
Networks are not limited by any upper bound, but by the availability of memory.

The objects that constitute the Processor-Group object and their relationships are
portrayed in Figure 8. The Processor-Group object treats its constituents in the same manner as
its parent object, the Simulator-Kemel. The Processor-Group passes control to the Graph-
Manager object which, in turn, passes control to the Functional Units (within FU lists) to carry
out the execution of the AMG nodes assigned to this Processor-Group.

Through Processor-Group's window, the number of Functional Units can be specified to
match a particular architecture such as that shown in Figure 11. The submenu of the "FU" menu

selection increases or decreases the number of Funtional Units by selecting "+" or ,

respectively. The upper bound on the number of Functional Units within a Processor-Group

object can be specified via the "FU Limit" push button. The upper bound of the number of

Functional Units is the maximum number of resources during the simulation process. If the total
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Figure 10. Portion of an example graph and its data structure.




number of Functonal Units in a Processor-Group object is less than the upper bound, the
Simulator creates, during the run time, as many Functional Units as ne_éessary to carry out its
operation without violating the upper bound restriction. The relative speed of a Processor-Group
object compared to other Processor-Groups canPc specified by the "Speed" submenu. The
relative speed of a Processor-Group objcctr can be decreased by "+" and increased by "-". The
"Help" button invokes the appropriate help file where specific guidance for the Processor-Group
window is provided. A push button is provided for a future selectable "Test Time" to simulate

self-testing by the Functional Units. However, the specific use of self-test is not yet implemented.

[— T At gun vyia
" FU 4 FU 1 A Graph Manager v
— IDLE
FU Limit 4 Node ... Sources |(Source @
TestTime |0 Packet . !
IL_ —ll Nodes [Ns E
1 5
Speed Sinks Sink B
Help !

Max Resources 4

Idle FUs Busy FUs

4

Figure 11. Processor Group.
4.6.1 Graph- Manager : :

The graph manager 1s responsible for ensuring that the overall system operates according
to the ATAMM rules ‘The Graph-Manager object, rcpresentmg the ;faph manager of ATAMM,
updates and monitors the status of the CMG thn a read transition of this graph is enabled, the
Graph-Manager asmgns 2 Funcuonal Umt from the list of avallable Funcuonal Umts to perform
the corresponding algorithm node according to priority if more than one node is enabled. If there

are additional enabled nodes, the Graph-Manager assigns them to the subsequent Functional Units
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in the available list. The Graph-Manager updates the marking of the CMG using status
information reported by the Functional Units.

Since the Graph-Manager object is part of the ProcessorfGroup object, it only keeps track
of the AMG nodes that are;sSigned to the Processor-Group object by a linked list of source,
node, and sink objects. Although the source and the sink objects have a lot in common with the
node objects, they also have some differences. For instance, the source objects must deal with the
special source control edges and the sink objects must keep track of the output data packets.
Therefore, the source and the sink objects are stored in separate linked lists from the node objects
to keep their operations separate and to speed up the simulation process. The data structure of
the algorithm graphs, as portrayed by the Graph-Manager object, is depicted in Figure 12.

Upon updating the CMG, if necessary, the Graph-Manager broadcasts the updated
information to other Graph-Managers. The necessity of broadcasting part or all of the updated
CMG depends on the partitioning of the nodes of the AMG. If dependencies exist among the
AMG nodes of the Graph-Managers or if an AMG node is assigned to multiple Graph-Managers,
then whenevér one Graph-Manager is updated, part or all of the updated information ought to be
shared with other Graph-Managers. Since the Graph-Manager object has knowledge of the
system, it is also responsible for creating Functibnal Units at run time, based on need without
violating the upper bound limitation of the Processor-Group object.

The Graph-Manager object displays information about the graph and the status of the
Functional Units in the Processor-Group object. This information mainly consists of the count
and names of the sources, nodes, and sinks that are assigned to the Processor-Group object, and

the content of the idle and busy Functional Unit lists of the Processor-Group object.

4.6.2 Functional Units
- The Functional Unit object is designed to carry out the tasks represented by the AMG

nodes. The Functional Unit object, therefore, does not distinguish between the sources, the sinks,
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l-?igure 12. An exar:r'zrrpgle'grépﬁ and the node data structure for one group of nodes. .

and the nodes of the AMG. To carry out execution of an AMG node qf any kind, the Functional
Unit must be assigned a node to execute. The assignment of an AMG node to the Functional Unit
is accomplished by the Functic;nal Unit that currently holds the semaphore and is the active graph
manager of the system. The activé grapﬁ manager, VarFunctional Unit, can assign an AMG node to

itself or another Functional Unit. A Functional Unit becomes the active graph manager when it is
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in the Wridng State or when it is both in the Idle State and at the top of the list of available
Functional Units. The active graph manager possesses the semaphore and is the only Functional
Unit that can talk over the Network while other Functional Units listen. To grab the semaphore,
the Functional Unit may have to compete with others. The semaphore is graxit:d based on the
specified protocol of the defined architecture. Sections 4.6.5 and 4.7 discuss the communication
network protocols.

To complete execution of the AMG node, the attached Functional Unit goes through a
sequence of states as depicted in Figure 6 for the AMOS. These states define the operating
system characteristics of the ATAMM Multicomputer Operating System (AMOS) and, thus, the
state diagram of the Functional Units. This state diagram is described in the next Section.
Through its window, the Functional Unit object displays information about its current status such

as current state, the name of the assigned AMG node, and the number of the current data packet.

463 Functional Unit State Diagram bescription

When idle, the Functional Unit awaits a fire-message indicating an AMG node is assigned
to it for execution. It also continuously scans the Idle-List of available Functional Units to
determine whether it is at the top of the list. When it finds itself at the top of the list and still idle,
it scaﬁs the CMG for enabled read nodes. A CMG read node is enabled when every one of its
input edges have a token with the appropriate tag and all of its output edges have an empty

buffer. If there are enabled CMG read nodes, it attempts to grab the semaphore to become the

active graph manager. Upon receiving a fire-message, the Functional Unit migrates to the

Reading State.

Grab Semaphore 1 7
In this state the Functional Unit attempts to establish a communication link with other

Functional Units. After establishing a communication link and grabbing a semaphore, the
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Functional Unit becomes the active graph manager of the system and moves to the Graph
Manager State. Otherwise, it goes to the Idle State.

Graph Manager ,

Being the active graph manager, the Functional Unit assigns the CMG read nodes to the
idle Functional Units in the Idle-List. It sends fire-messages to the appropriate Functional Units,
possibly including itself; moves the assigned Functional Units from the Idle-List to the Busy-List
of I-imctional Units; updates the CMG and broadcasts the updated information to others. After
the "Fire" broadcast, it releases the semaphore. The Functional Unit then migrates to the Idle
Statre.r

Reading | o | =
The Reading State represents the activity of reading the input data. The reading of input
data is accomplished by consuming one token from each input edge with the éﬁbféﬁﬁane token

tag. After reading the node's input data, the Functional Unit progresses to the Processing State.

Processing

In this state, the Functional Unit executes the task represented by the node. The duration
of this state is represented by the process time of the node. However, when simulating graphs
with variable node times, the duration of this state is computed on the fly by calling the
appropriate statistical function that represents the node. Upon completion, it progresses to the

Grab Semaphore State.

Grab Semaphore 2

To write the generated output data on the output edges, the Functional Umtmufstfgraib the

semaphore and become the active graph manager of the system. It remains in this state and

competes for the semaphore until it is granted.
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Writing

After becoming the active graph manager, the Functional Unit migrates from the Busy-List
to the Idle-List of Functional Units. It then writes the output data on the output edges of the
nodes and updates the CMG accordingly. The writing of output data is accomplished by inserting
one token oneach output edge registering the tag associated with it. The updated information is
broadcast to other Functional Units via the "Data” broadcast. Before releasing the semaphore, it

goes to the Graph Manager State.

46,4 FU Lists R S
The FU-Lists object manages the Functional Units and the Idle-List and Busy-List of
Functional Units within a Processor-Group object. It creates and destroys Functional Units and
moves them between the Idle-List and Busy-List upon receiving appropriate messages from the
Graph-Manager object. It also keeps track of the number of Functional Units in the Processor-
Group object. This object was created to facilitate the management of the Functional Units
objects.
| 465 Local-Networks 7 ”
The Local-Network 'object is envisioned to manage the arbitration of local semaphores
éxnoné ihc Funé.tioﬁalenivtsvénd tb .provide ra mca-xﬂs”of establishing cbfﬁrﬁuniéétion with the
Global-Network object. Although all implementations of ATAMM have considered only a single
sémaphorc; thé Local-Neii;vdrk and G}obﬁi}ﬁétwork objects arc intended to cxplare systems with
multiple semaphores and a hxc?archy o-f‘ semaphores In tﬁis rcéﬁfd, the Local-thwork is 7a cﬁild
of the Global-Network.
Nonetheless, this Simulator assists in the development of theories regarding the ATAMM
under ideal conditions. Networks do not exist under ideal conditions. Due to lack of time, the

Local-Network object is not yet implemented. In this regard, the communication latency is zero
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and the simulatdon is performed under the ideal condition. However, the system is still limited to

a single semaphore to ensure the integrity of the CMG markings.

4.7 Global-Networks S

The Global-Network object is envisioned to manage the arbitration of global semaphores
among the différent Processor-Group objects and to provide a means of establishing
communication with the Local-Network objects. For the reasons stated in Section 4.6.5, the
Global;Ncmork object is not yet implemented. The communication latency among the
Processor-Group objects are also zero and the simulation is performed under the ideal condition.
The single semaphore mentioned earlier is global throughout the system and ensures the integrity

of the CMG markings.

4.8 TBO/TBIO and Ensemble TBO/TBIO -

The Ensemble object is designed to calculate the TBO, TBIO, ensemble TBO, and
ensemble TBIO points. During the simulation process, the time when a data packet is injected
into an algorithm graph and the time when the same data packet exits the algorithm graph are
recorded. This information is then used to calculate the TBO and TBIO points for all data
packets. Through the Ensemble's window, the TBO and the TBIO points are plotted as shown in
Figure 13. This process continucs until the TBO and TBIO points of all data packets are
determined. Howevcr 1f cnscmble TBO and ensemble TBIO pomts are desucd aftcr cach
sm;ulauon of thc algonthm graphs, the TBO and thc TBIO pomts arc averagcd for each
sunulanon to 'calculate thc ensemble (or average) TBO and cnsemblc (or averagc) TBIO pomts

rcspccuvcly, and only these averages are recorded and plotted. This process continues until all

ensemble points are determined.
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Figure 13. The TBO and TBIO plots.

Through the menu options of the Ensemble window, the calculated TBO and TBIO points
along with their averages can be stored in an ensemble (ENS) file for future references by the
"Save..." option. Ensemble files have ".ens” extensions and are described in Section 4.10. It is
also possible to print thc plotted points as depicted by this window. The "Average" option gives
the averages of the points and the "Grid” option draws a grid along the x-axis and the y-axis for
better visualization of the plotted diagrams. The "Scale Down" option allows resizing of the

plotted diagram to the desired scale.

4.9 System S I
The System object is created to display the status of the system. While the simulation is in
progress, the System-Clock and name of the output FDT file are displayed. Continuous display of

the System-Clock gives an indication of the speed and duration of the simulation process.
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4.10 The lnputvéﬂhd OUtpuf File Formats

The input algorithm marked graph files provided by the Graph Entry tool are a set of node
and edge objects and the information abdut the relationships among them. The format of the
input graph (GRF) file generated by the Graph Entry tool is given Appendix A.

The format of the output FDT file as gcneratcd by the Simulator is deﬁned in Appendix B.
For dctaxls on the meaning and significance of ;acixi element, pleasc tefcr to documents provided
w1th the ATAMM Analysis tool [12]. An example of an FDT is provxded in Appendix C.

. The computcd TBO, TBI, ensemble TBO, ensemble TBIO points, and their averages are
stored in the output ensemblc (ENS) files. Two exaﬁiples of the ENS ﬁlés are provided in
Append1ccs D and E. Appendix D reprcsents the TBO and TBIO points for a single simulation
and Appendix E lists the ensemble TBO and ensemble TBIO points for each of 12 simulations and

the ensemble (average) for all simulations.

4.11 How to Use the Simulator -

To simulate an algorithm graph, the algorithm graph must first be generated by use of thé

t

Graph Entry tool. The graph must be drawn and its attributes such as read, proccss, and write

times of the nodes; node function (for variable node latencies); node assignment to groups of
processors; buffer sizes and initial tokens of the edges; and injection time and sequencing of the
sources must be defined. The algorithm graphs can then be loaded into the Simulator. The
Simulator extracts the necessary information from the GRF file and sets up the "sYStéxTi

accordingly. It is also possible to specify the system attributes through the Simulator's objects.

The procedure to simulate an algonthm graph is shown in Table 1 as well as in thc hclp 71’1?1&611

provided by the Simulator software.
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ET T

"Open..." an exisﬂng graph,

create as many "Processcr-Group” objects as necessary and Design these

L objects to fit your specifications (this information could also be provided
.. byaGRFfie), )

. . 'Discard..." as many data packets as necessary,

select “TBO/TBIO" or "Ensemble”,

specify “Durgtion...” of the simulation process (this information is also

provided by a GRF file and as a sink attribute),

set the "Speed” of the simulation process, and

- "Run’® the Simulator. When finished, the Simulator will prompt accordingly.

To exit the Simulator, either double click on the system menu button of the

Simulator's window or choose the exit option in its system menu.

Table 1. Simulator Execution Procedures.
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5. Case Studies and Experimental Results

In this section, two case studies are presented as a demonstration of the application
capabilities of the Simulator in studying the behavior of algorithm graphs under the ATAMM
rules. These case studies are conducted and presented in a manner that typically would take the
user of the Simulator through the procedural' steps for crcanngalgontl;n{:g;;hs and evaluating
the desired system. An example graph referred to as Intermediate 1 (Inter!.grf) and depicted in
Figure 14 is considered for all case studies. The first case study is a homogeneous simulation of
the Inter].grf graph. The second case study is a heterogeneous simulation of the Inter!.grf graph

that demonstrates capabilities and features of the Simulator in static assignment of nodes to

different groups of processors.

40 Node Name

Node Time

Source Sink |

Figure 14. The Interl.grf graph.

5.1 Case Study 1

This case study is primarily conducted for validating the results of the simulation with the
theoretical predictions and compliance with a previous simulator [9]. All nodes execute on a
single Processor-Group. The timing latencies of the nodes in Interl.grf are shown in Figure 14.

For this case study the read time and write time of the nodes are assumed to be zero time units for
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the ideal simulation of the graph. The Single Graph Playr £§GP) a;1d the ’fo;zl Graph Play (TGP),
(5, 6], for four resources of this graph are shown in Figure 15. The TGP of Figure 15 is the
modified TGP of the graph after add-ihg a control edge from node N3 to node N4,

After loading the Inter] grf file, the Simulator-Kernel window's caption bar is updated and
reflects the name of the file loaded, as shown in Figure 9. The Processor-Group windows are also
updated to reflect the specified system, Figure il_».ﬂ l{espl;s of the simulation of the gféph'arc then
analyzed by the Analysis Tool [12] and are shown in Figure 16. Analysis of the results of the
simulation of the graph reveal compliance with the theoretical prediction where TBO equals 25,
as depicted in Fxgurc 5. .

5.2 Case Study 2

The static assignment of nodes and heterogeneous capabilities of the Simulator are studied
here. In this case study, the nodes N1 and N2 and the S”ourcc are assigned to one Processor-
Group with two functional units. Nodes N3, N4, N5, and the Sink are assigned to another
Processor-Group with two functional units. This partition of nodes among Processor-Groups is
consistent with the modified TGP of Figure 15 énd should result in the same TBO and TBIO
performance as for Case Study 1. Analysis of the results reveal that the same performance as the
previous case study are achieved. Figure 17 is the task and resource activity display and the

cursors mark a time interval corresponding to the TGP of the graph.

-
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Figure 15. SGP and Modified TGP.
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between the vertical cursors is 25 time units.
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Figure 17. The task and resource activities for Case Study 2. The spacing

between the vertical cursors is 25 time units.
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6. SUMMARY

A Simulator is developed to simulate the execution of algorithm marked graphs in
acoordance with the ATAMM rules. Whereas previous ATAMM simulators assume that all
algorithm graph nodes are executed on a homogeneous set of functional units, this new S{rnulator
enables groups of graph nodes to execute on different processor groups, where each processor

group may represent a dxfferent type of funcnonal unit. Thus, a heterogeneous archatecture may

‘be simulated. The Slmolator is based on object oriented programming and is event—dnvcn to

accelerate simulation speed. It provides the simulation functions in an ATAMM Integrated
Environment, which also includes a Graph Entry tool for describing graphs for simuhtion, a
Design Tool for analyzing and altering a graph to obtain desired performance, and an Analysis
Tool for playing back the results of a simulation. Test cases show that the sunulator accurately :
executes the ATAMM rules for both a heterogeneous architecture and a homogeneous

architecture, which is a special case for only one processor group.
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Appendix A

Format of Graph Descripﬁon in Graph-Entry Output File

Note 1. [TALICs underline are for information

Note 2. Only ITALIC is for a choice or decision
Note 3. All Times are Positive Long Integer Values
Note 4. All Locations "X Y are range 1..100

(HEADER)

Version 2.0.13
System_Max_CPUs
Current_Number_CPUs
Max_Index
Current_Index
Max_Number_Groups
Max_Nodes
Max_Arcs
Max_Sources
Max_Sinks
Self_Test_Time
Display_CPU_Number
Display_Index_Number
Selected_Group
Show_All_Objects
Origin.X

Origin.Y
Right_Bottom.X
Right_Bottom.Y
Grid_Status
Heterogeneous
Number_CPUS_Group
Object_Type

LOOP

-- Number of CPUs allowed in the system range 1..32

— Initial number of CPUs range 1..System_Max_CPUs
-- Max Indexes for the Operating Point Table range 1..10
— Initial Index for the run range 1..Max_Index

— Number of Heterogeneous Groups

-- Max Number of Nodes in all Graphs

-- Max Number of Arcs in all Graphs.

-~ Max Number of Sources.

-- Max Number of Sinks.

-- Used to Display a certain configuration of a Graph
— Display which index configuration

-- Display for Enabled or Disabled Control Arcs

-- Used to size of the Graph Window

-- Used to size of the Graph Window

— Used to size of the Graph Window

- Used to size of the Graph Window

-- Grid Display ON or OFF

- True / False Flag for Heterogeneous System Simulations
- (Array[Max_Number_groups..1] of Integers)

- (NODE, SOURCE, SINK, ARC)

if Object Type = NODE then

Node_Graph_Number

Block_Index
Node_Number
Node_Name
Node_Mode

Node_User_File_Name

Node_Priority

-- unique for all blocks in all graphs

-- (SIMPLEX, DUPLEX, TMR)

Node_Instantiations(1..System_Max_CPUs,1..Max_Index)

Node_Read_Time




Node_Process_Time — (Mean Value of Process Time)
Node_Write_Time

Node_Color

Node_Number_Inputs

Node_Number_Outputs

Node_Random_Function - (AB,C, etc.)
Node_LowerProcessTimeBound -- (Smallest Possible Bound on Process Time)
Node_UpperProcessTimeBound - (Largest Possible Bound on Process Time)
Node_ProcessType  — (Boolean array[1..Max_Number_Groups] Heterogeneous)
Node_SubGraph_File_Name - If node has a subgraph.
Node_Location - (X Y) Coordinates

endif

If Object Type = SOURCE then
Source_Graph_Number
Block_Index
Source_Number
Source_Name
Source_Mode

Source_Priority - = Graph Priority (?)
Source_TBI(1..System_Max_CPUs,1..Max_Index)

-+ . .==Time Between Inputs (TBI)
Source_Number_DataPackets — Number of Data Packets for each Source Edge

Source_Write_Time
Source_ProcessType - (Boolean array[1..Max_Number_Groups] Heterogeneous)
Source_Location -- (X'Y) Location of the Source
end if
if Object_Type = SINK then
Sink_Graph_Number
Block_Index
Sink_Number
Sink_Name
Sink_Mode
Sink_Read_Time
Sink_Number_DataPackets -- Number of Data Packets Received at Sink
Sink_ProcessType - (Boolean array[1..Max_Number_Groups] Heterogeneous)
Sink_Location -- (X'Y) Location of the Source
end if
if Object Type = ARC then
Edge_Number

Edge_Type -~ (CONTROL, DATA)

Edge_Inidal_Type -- (SOURCE_TYPE, NODE_TYPE, SINK_TYPE)
Edge_Inidal - Number of Initial

Edge_Inidal_String - Name of the Node, Source, Sink
Edge_Inital_Block_Index - Block Index of the Initial Block
Edge_Inidal_Parm_Number -- Position in procedure call (0 if CONTROL)
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Edge_Terminal_Type - (SOURCE_TYPE, NODE_TYPE, SINK_TYPE)

Edge_Terminal

Edge_Terminal_String -- Name of the Node, Source, Sink

Edge_Terminal_Block_Index - Block Index of the Terminal Block

Edge_Terminal_Parm_Number -- Position in procedure call (0 if CONTROL)

if Edge _Type = DATA then
Edge_Data_Type — TBD Either a File_Name or Data_Type Name
Edge_Size -~ TBD Whether or not to include.
Edge_Tagging_Rule -- Data Packet Distance

else ' ' '

Edge_Tagging Rule(1..System_Max_CPUs,1..Max_Index)
if Edge_Terminal_Type = SOURCE_TYPE then
Edge_Delay(1..System_Max_CPUs,1..Max_Index)
- Firing Delay for Terminal
Edge_Selector(1..System_Max_CPUs,1..Max_Index)
- Output edge selection for token

end if
end if
Edge_Inital_Tokens(1..System_Max_CPUs,1..Max_Index)
-- Seperated by <CR> - -
Edge_Tokens_Limit(1..System_Max_CPUs,1..Max_Index)
-- Arc not enabled if size =0
Edge_Max_Buffers

Edge_Number_Joints — - ===~ - o :
Edge_Joint (1..Max_Number, Jomts) — X Y coordinates
end if
REPEAT UNTIL <EOF>




Appendix B
Format of the FDT File Generated by the Simulator

//The FIELDS to be read from an FDT event
Fields=35

TIME "%lu "

EVENT "%s "

TASK "%s "

COLOR "%d "

RESOURCE "%s"

//The possible EVENTS that can be found in the FDT file
//{FIRE, DATA, RUN, HALT, EVENT}
Events = 10

NodeRead >FIRE

NodeProcess

NodeWrite

Nodeldle >DATA

FU_Test >FIRE

FU_EndTest >DATA

SourceWrite >FIRE

Sourceldle >DATA

SinkRead >FIRE

SinkIdle >DATA

/[The possible ACTIVITIES that can be found in the FDT file
Activities = 4

Process >NodeProcess

ReadWrite  >SourceWrite,SinkRead,NodeRead,NodeWrite
Test >FU_Test

Idle >Nodeldle,Sourceldle,SinkIdle, FU_EndTest

//The clock resolution of time tags in clock ticks per second
//Clock = 1000000
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Appendix C

FDT File Example
// Simulator Version 3.0, Output FDT File
// Graph file name: ENSIM3\interl.grf
25 SourceWrite Source 1 Proc1-4
25 Sourceldle Source 1 Proc1-4
25 NodeRead N1 1 Procl1-3
25 NodeProcess N1 1 Proc1-3
35 NodeWrite N1 1 Procl-3
35 Nodeldle N1 1 Procl-3
35 NodeRead N4 | Procl-2
35 NodeProcess N4 1 Proc1-2
35 NodeRead N3 1 Proc1-1
35 NodeProcess N3 1 Proc1-1
35 NodeRead N2 1 Proc1-4
35 NodeProcess N2 1 Proc1-4
45 NodeWrite N3 1 Procl-1
45 Nodeldle N3 1 Procl-1
50 SourceWrite Source 1 Procl-3
50 Sourceldle Source 1 Proc1-3
50 NodeRead N1 1 Procl-1
50 NodeProcess N1 1 Procl-1
60 NodeWrite N1 1 Procl-1
60 Nodeldle N1 1 Procl-1
60 NodeRead N4 1 Procl1-3
60 NodeProcess N4 1 Proc1-3
60 NodeRead N3 1 Proc1-1
60 NodeProcess N3 1 Proc1-1
65 NodeWrite N4 1 Procl-2
65 Nodeldle N4 1 Procl-2
65 NodeRead N2 1 Procl-2
65 NodeProcess N2 | Procl-2
70 NodeWrite N3 1 Procl-1
70 Nodeldle N3 1 Procl-1
75 NodeWrite N2 1 Procl-4
75 Nodeldle N2 1 Procl-4
75 NodeRead N5 1 Procl-1
75 NodeProcess N5 1 Procl-1
75 SourceWrite Source I Procl-4
75 Sourceldle Source 1 Procl-4
75 NodeRead N1 1 Procl-4
75 NodeProcess N1 1 Proc1-4
85 NodeWrite N5 1 Procl-1
85 Nodeldle N5 1 Procl-1
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Appendix D

ENS File Example for TBO & TBIO for 12 Data
Packets of a Single Simulation

// Simulator Version 3.0, TBO/TBIO Points
// Graph file name: EASIM3\inter1.grf

Number of TBO/TBIO points at Sink: 12

TBO TBIO
85.00 60.00
30.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
25.00 65.00
TBO/TBIO Averages:
30.42 64.58
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Appendix E

ENS File Example of Ensemble TBO and Ensemble TBIO
Points for 12 Simulations

// Simulator Version 3.0, TBO/TBIO Ensemble Points
// Graph file name: ENSIM3\inter1.grf

Number of TBO/TBIO Ensembles at Sink: 12

TBO TBIO
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
30.00 64.00
TBO/TBIO Ensemble Averages:

30.00 64.00
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Appendix F

- Object-Oriented Programming

The following is quoted from [9] because of its importance in the development of this
Simulator. 7

"Structured programming flourished because it was efficient in terms of human resources.
Building abd testing programs in discrete pieces enabled large applications to be developed in less
time wnh fcwcr bugs than thcxr non- str_q_ctured counterparts In addmon the run-nmc 1mpact of
structunng becomes less cvxdent as‘a progr;m grows m 51ze Objcct-oncntcd programming
Vextends structured programmmg by encapsulaung both data‘ and their associated fubqqons.

In traditional procedural languages like C or Pascal, the programmer defines data
structures and writes functions and procedures to operate on the data. Although normally a
correspondence exists between which functions operate on which types of data, most procedural
languages offer no formal support for this correspondence; it is entirely the programmer's
responsibility to manage such an abstraction.

In an object-oriented approach, both data and operations that work with that data are
combined into a single logical unit known as an object. Dividing a program into objects
encompassing both data and operations makes the program more closely represent the logical
design that is being implemented. As a result, object-oriented programs are generally easier to
understand and maintain than procedural programs. .

Object-oriented programming is merely the art of breaking a program down and
organizing it. In the case of structured programs, the primary concem is what the program is
doing. A structured program is based on operations. When writing object-oriented programs, the
program is organized around data types and their associated operations. It is a significant change
in perspective; instead of functional hierarchies, there are data hierarchies. Programming in an

object-oriented language involves creating objects and sending them commands or messages to do

things.
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Object-oriented programs are bés?&i;g;; four concepts: classes, objects, methods, and
inheritance. A class is similar to a Pascal RECORD. It describes an overall structure for any
number of types based upon it. The main difference between a class and a record is that a class
combines data fields (called instance vaﬁ'ables) and procedures and functions (called methods)
that act upon the data.

‘An objectis a variable of a class, All objects derived from a class are considered members
" of that class and share similar characteristics of that class. '

Methods arcrprocedurcs and functions cnéapsﬁlated in a class or object. Calling a method

is referred to as passing a message to an object. Object-oriented programs do most of their

works by sendin g rﬁessagcs to 6bjects.
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